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A B S T R A C T

Some popular metrics to evaluate land change simulation models are misleading. Therefore, land change sci-
entists have called for the development of methods to evaluate various aspects of modelling applications. This
article answers the call by giving novel methods to compare three types of land change: 1) reference change
during the calibration time interval, 2) simulation change during the validation time interval, and 3) reference
change during the validation time interval. We compare these changes by using Intensity Analysis’ three levels
and the Figure of Merit’s four components: Misses, Hits, Wrong Hits and False Alarms. We illustrate the concepts
by applying a Cellular Automata – Markov land change model to a case study in northeast Hungary. We used
reference maps of five land categories to calibrate the model during 2000–2006, then to validate the simulation
during 2006–2012. Intensity Analysis’ time interval level shows that the simulation change and the reference
change decelerated from 2000–2006 to 2006–2012. Intensity Analysis’ category level shows that the simulation
losses were less than what a pure Markov chain would have dictated. Intensity Analysis’ transition level shows
that the model’s Markov algorithm simulated correctly that the gain of Forest targeted Agriculture and Wetland.
The Figure of Merit’s components reveals more allocation error than quantity error. Our collection of metrics
show that more error derived from the Cellular Automata algorithm than from the Markov algorithm. We re-
commend that scientists use Intensity Analysis and the Figure of Merit’s components to reveal various funda-
mental aspects of modelling applications.

1. Introduction

Land change models can simulate future changes among land ca-
tegories (Camacho Olmedo et al., 2018). Use of such models can give
insight concerning management options. For example, extrapolation of
recent trends can help to anticipate threats to habitats (Bierwagen et al.,
2010; Hepinstall et al., 2008; Szabó et al., 2012; Ziółkowska et al.,
2014). Proper insight requires that modellers understand how model
behavior compares to landscape behavior, which presents several
challenges. Therefore, scientists have called for more research into
land-change modelling (Paegelow et al. 2013; Pontius et al., 2018;
National Research Council 2014). Specifically, Brown et al. (2013) urge
that “more needs to be done to develop and disseminate methods for
evaluating land-change models”. Our article responds to these chal-
lenges by presenting methods to compare simulated change to reference
change by applying a collection of metrics that give deeper insights

than existing popular metrics.
Empirical models typically examine historic patterns of land change

during a calibration time interval, and then extrapolate those patterns
beyond the calibration time interval. Models simulate temporal change
during the extrapolation in terms of two concepts: quantity and allo-
cation. The quantity concerns the size of each transition from one ca-
tegory to another. The allocation concerns the spatial distribution of
each transition. Models’ algorithms frequently specify the quantity se-
parately from the allocation.

Markov models can describe each transition’s quantity. A Markov
matrix specifies the proportion of each category that transitions to
another category during each time interval. The empirical Markov
matrix during the calibration time interval can extrapolate the quantity
of each transition beyond the calibration time interval by applying a
Markov chain (Baker, 1989). A Markov chain is a popular method of
extrapolation in land change models.
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Cellular Automata (CA) can guide each transition’s allocation. CA
models consist of a regular grid of cells and rules that dictate how each
cell’s neighbours influence the future category of each cell (Sipper,
1997). CA models typically simulate transitions in cells that are near the
borders between categories. Neumann and Ulam introduced cellular
automata in the 1940′s to see whether mathematical formulas and lo-
gical rules can describe self-reproduction of biological systems
(Benenson and Torrens, 2004).

CA-Markov models combine a Markov algorithm to simulate the
quantity of change and a CA algorithm to simulate the allocation of
change (Singh et al., 2015). Researchers have applied CA-Markov
models to various case studies (Jalerajabi and Ahmadian, 2013;
Paegelow et al., 2014; Sang et al., 2011). Some studies compared CA-
Markov with other land change models, such as GEOMOD and Idrisi’s
Land Change Modeller (Camacho Olmedo et al., 2015; Pontius and
Malanson, 2005).

CA-Markov is one type of model that simulates transitions among
categories, while many others exist. For instance, SLEUTH is a CA
model but SLEUTH does not use a Markov matrix to extrapolate the
quantity of each transition (Clarke et al., 1997; Silva and Clarke, 2002).
SLEUTH has been used for setting up scenarios under various conditions
for forecasting urban growth based on historical and contemporary
conditions (Herold et al., 2003). Some models are neither CA nor
Markov. For example, some models focus on economic factors, where
land occupation is based on market conditions, such as in Computable
General Equilibrium and Partial Equilibrium models (De Rosa et al.,
2016). The structure of land change models vary based on their pur-
poses. Some researchers aim to analyse hotspots of land change at a
national level (Verburg et al., 2002) or at spatial resolutions as detailed
as the household level (Evans and Kelley, 2004). Some models project
changes by analyzing socio-economic and environmental drivers to-
gether (Veldkamp and Verburg, 2004). There is a need to integrate
model results into landscape planning because environmental man-
agement is a typical purpose (Lippe et al., 2017; Convertino and
Valverde, 2013). It is useful to know the implications of an extrapola-
tion of recent trends so that decision-makers can understand the tra-
jectory of the system. Regardless of model selection or purpose, mod-
ellers should know three aspects of any application: 1 how the model
characterizes change during the calibration interval, 2 how the model
extrapolates the change during a validation interval, and 3 how the
extrapolated change compares to the reference change during the va-
lidation interval.

Some scientists compared the model’s output map at the final time
point of the validation interval to the reference map at the same time
point to measure the accuracy of the simulation (Yang et al., 2014;
Halmy et al., 2015; Singh et al., 2015, Mishra and Rai, 2016; Keshtkar
and Voigt, 2016; Chakraborti et al., 2018). That comparison cannot
give insight to temporal change, because both maps show the same time
point. Therefore, that two-map comparison cannot distinguish between
correctly simulated change and correctly simulated persistence during
the validation time interval. If persistence dominates a landscape, then
the two-map comparison typically gives large values for percent correct
and kappa, regardless of whether the model simulates change correctly.
In order to avoid this conceptual blunder, Pontius et al. (2008, 2011,
2018) recommend the use of three maps to compare simulation change
versus reference change during the validation time interval. The three
maps are: reference at the start of validation interval, simulation at the
end of validation interval, and reference at the end of validation in-
terval. The Figure of Merit (FOM) is a popular metric for model vali-
dation using this three-map comparison (Klug et al., 1992; Perica and
Foufoula-Georgiou, 1996). The FOM ranges from zero to one, where
zero means no intersection between simulation and reference change
while one means perfect intersection between simulation and reference
change. The FOM has limited ability to offer insight because the FOM is
a single metric that combines information concerning quantity and al-
location. For example, the FOM fails to reveal how the quantity of

simulated change compares to the quantity of reference change. Fur-
thermore, FOM fails to show how quantity disagreement compares to
allocation disagreement. Our article shows how to compute and inter-
pret FOM’s components in a manner that distinguishes between quan-
tity and allocation.

Intensity Analysis can offer insights to modelling applications be-
cause Intensity Analysis is a framework to reveal various patterns of
change among categories across time intervals (Aldwaik and Pontius,
2012; Aldwaik and Pontius, 2013). Intensity Analysis has three levels,
where each increasing level examines increasingly detailed information
given the previous level. Intensity Analysis has become popular to
analyse temporal changes among categories (Castro and Rocha, 2015;
Raphael John et al., 2014; Yang et al., 2017; Quan et al., 2019; Rocha
et al., 2017; Aabeyir et al., 2017; Zhou et al., 2014; Huang et al., 2018;
Huang et al., 2012). To the best of our knowledge, our article is the first
to use Intensity Analysis to evaluate the application of a simulation
model.

There are various reasons why the simulation change might not
match the reference change during the validation interval. First, the
reference change might not be stationary from the calibration interval
to the validation interval, in which case empirical calibration would
likely produce an extrapolation that lacks predictive power. Second, the
model might simulate processes that do not exist in the landscape, such
as Markov processes that dictate the quantity of change or neighbour-
hood processes that dictate the allocation of change. Therefore, proper
interpretation requires clear methods to compare three time intervals:
1) reference change during the calibration interval, 2) simulation
change during the validation interval, and 3) reference change during
the validation interval. Previous methods focused exclusively on the
validation interval, which offers helpful but limited insight because
such methods fail to consider differences between the calibration and
validation intervals. One of the innovations of our article is that we
compare the calibration interval to the validation interval.

We illustrate the concepts using a case study in Northeast Hungary.
We applied Idrisi Selva’s CA-Markov model, and then evaluated the
application by using Intensity Analysis and the FOM’s components. We
compare three time intervals: reference 2000–2006, simulation
2006–2012, and reference 2006–2012. Our objective is to show how
Intensity Analysis and FOM’s components offer valuable insights con-
cerning how model behavior relates to landscape behavior. The com-
bined use of these measurements and the comparison of the calibration
interval to the validation interval are the two main innovations of our
paper.

2. Methods

2.1. Study site

The study site is a 25×25 km region located around Tokaj city and
the tributary of Tisza and Bodrog rivers in Hungary. The site is a diverse
landscape of five topographically different microregions (Dövényi,
2010). A large part of the region has been a nature reserve since 1986,
and since 2002 has belonged to the Tokaj Wine Region Historic Cultural
Landscape, which is a UNESCO World Heritage site (Kerényi, 2015).
The site’s protected status restricts large land changes.

2.2. Data and simulation

We used maps of the Corine Land Cover (CLC), produced by the
European Environment Agency and managed by the Copernicus Land
Monitoring Service (https://land.copernicus.eu/pan-european/corine-
land-cover). CLC data are popular for landscape monitoring and ana-
lysis, including in Hungarian study areas (Csorba and Szabó, 2009;
Túri, 2010). Büttner et al. (2004) report the data have a thematic ac-
curacy of at least 85%. The CLC programme established land cover
layers via visual interpretation of satellite images at a 1:100,000 scale,
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minimum mapping unit of 25 ha and width of linear objects of 100m.
CLC categories have three hierarchical levels (Feranec et al., 2016).

The most detailed third level has 44 categories, of which 18 appear in
our study region. We used the first level, which has five aggregated
classes, which we name Artificial, Agriculture, Forest, Wetland, and
Water. Table 1 describes our five land cover classes and their equivalent
class in CLC nomenclature. CLC data has been distributed in the stan-
dard European Coordinate Reference System defined by the European
Terrestrial Reference System 1989 (ETRS89) datum and Lambert Azi-
muthal Equal Area projection (EPSG: 3035). We obtained vector maps
at 2000, 2006, and 2012, and then converted them into 25m spatial
resolution raster layers in the software Idrisi Selva.

We used the change during 2000–2006 to calibrate the CA-Markov
model. The model then simulated changes during 2006–2012, which is
the validation time interval. The CA-Markov model has distinct algo-
rithms to simulate the quantity versus the allocation of each transition.

The model’s Markov algorithm guides the simulation’s quantity. The
algorithm computes a Markov matrix based on the changes during the
calibration time interval, and then uses a Markov chain to extrapolate
the size of each transition during subsequent time intervals. The
Markov chain assumes a constant proportion of each initial category
transitions to every other category during each time interval.

The model’s CA algorithm guides the simulation’s allocation. The
algorithm allows the simulation of a spatial process whereby each ca-
tegory gains near the edges of the category’s initial patches (Eastman,
2012; Mas et al., 2014). A spatial filter and an iteration number influ-
ence how near to the edges the changes occur. We used a 5-by-5 spatial
filter and an iteration number of six, which are the model’s default
parameters. Idrisi Selva’s CA-Markov model does not have automated
calibration for these two parameters.

Fig. 1 shows the maps that serve as the basis of our analysis. At all
three time points, Artificial accounts 5–6% of the spatial extent, Agri-
culture for 72–74%, Forest for 14–16%, Wetland for 4% and Water for
3%.

2.3. Intensity Analysis

Intensity Analysis is a framework to understand the sizes and in-
tensities of temporal changes among categories (Aldwaik and Pontius,
2012, 2013; Pontius et al., 2013). Intensity Analysis has three levels:
Interval, Category, and Transition. The Interval level examines the
overall change during each time interval. The Category level examines
the loss and gain of each category during each time interval. The
Transition level examines how the gain of a category transitions from
other categories during each time interval. We applied Intensity Ana-
lysis using free software from http://www.clarku.edu/~rpontius/. The
inputs were a crosstabulation matrix for each of three time intervals:
2000–2006 reference, 2006–2012 simulation, and 2006–2012 re-
ference.

Table 2 gives the mathematical notation for the equations of In-
tensity Analysis based on Pontius et al. (2013). All time intervals have
the same duration of six years; therefore, we did not use the equations
of Aldwaik and Pontius (2012), which compute annual change during
time intervals that have various durations.

For the interval level, Eq. (1) defines St, which is the change per-
centage during each interval t. The change percentage St is the uniform

intensity during interval t for the category level. Eqs. (2) and (3) give
the category level intensities of loss Lti and gain Gtj during interval t. If
change during interval t were distributed uniformly across the spatial
extent, then St= Lti=Gtj for all categories i and j. If Lti < St, then the
loss of category i is dormant during interval t. If Lti > St, then the loss
of category i is active during interval t. Similarly, if Gtj < St, then Gtj is
dormant; and if Gtj > St, then Gtj is active. If the status as dormant or
active is the same during sequential time intervals, then we say the
category’s loss or gain is stationary. The loss intensity Lti is identical to
the diagonal entry in a Markov matrix for interval t concerning category
i.
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For the transition level, Eq. (4) gives the transition intensity Rtij
from category i to category j during time interval t. Eq. (5) gives the
uniform intensity Wtj for the gain of category j from categories that are
not j at the interval’s start time. The order of subscripts j and i in Ctji in
the denominator of Eq. (5) is intentional, so that the summation over i
subtracts category j at the interval’s start time. If category j were to gain
uniformly from all other categories, thenWtj= Rtij for all i. If Rtij < Wtj,
then the gain of j avoids i. If Rtij > Wtj, then the gain of j targets i. If the
status as avoiding or targeting is the same during sequential time in-
tervals, then we say the transition is stationary. The transition intensity
Rtij is identical to the off-diagonal entry in a Markov matrix for interval t
concerning the transition from category i to category j.
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Table 1
Categories in our land change model along with the equivalent CLC category (standard level I) and the content of each category.

Category in model Category in CLC Description of category in our study area

Artificial Artificial surfaces All urban facilities (including industrial areas) and mining sites
Agriculture Agricultural Mainly agricultural areas with various cultures (arable land, vineyards, fruit plantations, pastures, etc.)
Forest Forests and semi-natural Mainly broad-leaved and mixed forests with transitional areas into scrub
Wetland Wetlands Inland wetlands
Water Water bodies All forms of water bodies, including natural and man-made water bodies or rivers.
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2.4. Figure of Merit’s components

We compare the simulation change to the reference change during
2006–2012 to gain insight concerning model validation. We perform
the comparison visually by overlaying three maps: reference 2006, si-
mulation 2012, and reference 2012. We also perform the comparison
quantitatively by computing the components of the FOM. The FOM is a
ratio, where the numerator is the intersection of simulated and re-
ference change, while the denominator is the union of simulated and
reference change. We used the ‘lulcc package’ of the R 3.3.3 software to
compute the FOM’s components (Moulds and Buytaert, 2015; R Core

Team 2017). Eq. (6) shows how the FOM derives from its four com-
ponents: Misses, Hits, Wrong Hits and False Alarms (Pontius et al.,
2011).

=

+ + +

Figure of Merit
Hits

Misses Hits Wrong Hits False Alarms

( )100%

(6)

where Misses= area of error due to reference change simulated as
persistence; Hits= area of correct due to reference change simulated as
change; Wrong Hits= area of error due to reference change simulated
as change to the wrong category; False Alarms= area of error due to
reference persistence simulated as change.

Fig. 1. Reference maps of categories at three time points and of change during two time intervals in northeast Hungary. Persistence means a category remains the
same during a time interval.
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FOM’s components allow computation of quantity disagreement,
allocation disagreement and total disagreement (Chen and Pontius,
2010; Liu et al. 2014). Eq. (7) gives quantity disagreement, while Eq.
(8) gives allocation disagreement. Eq. (9) shows that the total dis-
agreement is the sum of the quantity disagreement, allocation dis-
agreement and Wrong Hits. Wrong Hits are disagreement in the de-
tailed respect that Wrong Hits are places where the simulation map
does not match the reference map at the end time of the validation
interval. Wrong Hits are agreement in the broad respect that Wrong
Hits are places where change occurs according to both the simulation
and the reference maps during the validation interval.

=Quantity disagreement False Alarms Misses| | (7)

=Allocation disagreement False Alarms Misses2 MINIMUM( , ) (8)

= +

+

Total disagreement Quantity disagreement Allocation disagreement

Wrong Hits (9)

3. Results

3.1. Intensity Analysis

Table 3 shows the number of cells of each transition during three

Table 2
Mathematical Notation for Intensity Analysis.

Symbol Meaning

Ctij number of cells that are category i at start and category j at end of time interval t
Ctji number of cells that are category j at start and category i at end of time interval t
Gtj intensity of gain of category j during time interval t relative to size of category j at end of time interval t
i index for a category
j index for a category
J number of categories
Lti intensity of loss of category i during time interval t relative to size of category i at start of time interval t
Rtij intensity of transition from category i to category j during time interval t relative to size of category i at start of time interval t
St change percentage during time interval t
t index for a time interval
Wtj uniform intensity of transition from all non-j categories to category j during time interval t relative to size of all non-j categories at start of time interval t

Table 3
Number of cells that transition from each row’s start time category to each
column’s end time category. For each transition, the top number gives
2000–2006 reference; the middle number gives 2006–2012 simulation; and the
bottom number gives 2006–2012 reference. Persistence is a transition from a
category to itself. Loss is the row’s sum minus persistence. Gain is the column’s
sum minus persistence. Overall change is in the lower right.

End Time

Start Time Artificial Agriculture Forest Wetland Water Loss

Artificial 50,107 44 0 1 0 45
55,837 0 0 0 0 0
55,762 9 66 0 0 75

Agriculture 5,730 728,057 7,092 270 5 13,097
5,618 719,515 6,564 0 0 12,182
141 722,944 8,256 355 1 8,753

Forest 0 415 140,508 3 5 423
0 0 147,959 0 2 2

550 436 146,969 3 3 992
Wetland 0 2,812 359 36,770 0 3,171

0 2,390 325 34,329 0 2,715
0 145 528 36,371 0 673

Water 0 369 2 0 27,451 371
0 361 0 0 27,100 361
1 2 8 711 26,739 722

Gain 5,730 3,640 7,453 274 10 17,107
5,618 2,751 6,889 0 2 15,260
692 592 8,858 1,069 4 11,215

Fig. 2. Category intensities during three time intervals: (a) 2000–2006 re-
ference, (b) 2006–2012 simulation, and (c) 2006–2012 reference.
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time intervals. One million cells exist the spatial extent; therefore, each
entry in Table 3 divided by ten thousand gives the percentage of the
spatial extent. The lower right entry shows that overall reference
change during 2000–2006 is 17,107 cells, implying 1.7% of the spatial
extent. Overall simulation change during 2006–2012 is 1.5%, while
overall reference change during 2006–2012 is 1.1%.

Fig. 2 shows results from Intensity Analysis’ interval and category
levels. The uniform lines in each graph indicate the interval level in
terms of overall change as a percentage of the spatial extent. The model
simulated deceleration of overall change from 2000–2006 to
2006–2012, while the simulation deceleration was not as severe as the
reference deceleration. Fig. 2a and b show that the dormant or active
status of each loss and gain during 2000–2006 was the same as during
the simulation. If the software were to have simulated the sizes of the
transitions by using a Markov matrix exclusively, then the 2006–2012
simulation loss intensities would be equal to the 2000–2006 reference
loss intensities. However, Fig. 2a and b show that the 2006–2012 si-
mulation loss intensities are less than the 2000–2006 reference loss
intensities. Fig. 2a and c show that the reference patterns are not sta-
tionary from the calibration interval to the validation interval. Most
noteworthy, Wetland lost and Artificial gained substantially during the
calibration interval but not during the validation interval. Therefore,
the categorical intensities during the simulation do not match the re-
ference during 2006–2012. Table 3 shows that Agriculture had the
largest size of loss, but Fig. 2 shows that Agriculture did not have the
largest intensity of loss during all time intervals. The loss intensity for
Agriculture was less than for Wetland because of Agriculture’s large
size, which is in the denominator of the intensity. Wetland had the
greatest loss intensity during the calibration interval and the simula-
tion, which was due in part to Wetland’s small size in the denominator
of the intensity.

Fig. 3 shows results of the transition level Intensity Analysis for the
two largest gains: Artificial and Forest. Comparison of the 2000–2006
reference and the simulation show how the CA-Markov model extra-
polated the intensity of changes from the calibration interval to the
validation interval. If the software were to have simulated the sizes of
the transitions by using a Markov matrix exclusively, then the
2006–2012 simulation transition intensities would be identical to the
2000–2006 reference transition intensities. The gain of Artificial is not
stationary through time. The gain of Artificial targeted only Agriculture
during the calibration interval and the simulation. However, the re-
ference gain of Artificial targeted only Forest during the validation
interval. In contrast, the gain of Forest is stationary across the three
intervals with respect to how the gain of Forest avoided or targeted the
non-Forest categories.

3.2. Figure of Merit’s components

Fig. 4 shows the Figure of Merit’s components. The 2006–2012 re-
ference change is the union of Misses, Hits, and Wrong Hits. The
2006–2012 simulation change is the union of Hits, Wrong Hits and
False Alarms. The CA-Markov model allocated the gain of each category
around patches of the category at 2006, which caused long winding
patches of simulation change. The shapes of the patches of simulation
change do not match the compact and isolated patches of reference
change. Correctly simulated persistence accounts for 97% of the spatial
extent, which is why overall percent correct and kappa at the end time
point are misleading measurements of a model’s ability to simulate
change.

The Figure of Merit is 0.07%, which is the size of Hits as a per-
centage of the sum of sizes of the four components. Fig. 5 shows that
Hits accounted for 0.02% of the spatial extent. Reference change during
2006–2012 accounted for 1.12% of the spatial extent, which is the sum
of Misses, Hits, and Wrong Hits. Simulation change accounted for
1.53% of the spatial extent, which is the sum of Hits, Wrong Hits and
False Alarms. Quantity disagreement is 0.41% while allocation

disagreement is 2.12% of the spatial extent. Total disagreement is
2.57%, which is the sum of Misses, Wrong Hits and False Alarms.

4. Discussion

4.1. Quantity disagreement and Intensity Analysis

The CA-Markov model uses a Markov chain to guide the simula-
tion’s quantity of each transition. Intensity Analysis shows how the si-
mulation produced small differences with respect to 2006–2012 re-
ference concerning quantity.

Intensity Analysis’ interval level showed that the model simulated
correctly the deceleration of overall change from the calibration in-
terval to the validation interval. Many Markov chains lead to a steady
state concerning the size of each category, in which case the Markov
chain extrapolates a deceleration of change. Intensity Analysis’ category
level showed that the Markov algorithm simulated the dormant or ac-
tive status of each category’s loss and gain as the category’s same status
during the calibration interval. Intensity Analysis’ transition level
showed that the simulated gain of Artificial targeted Agriculture, as was
the case during the calibration interval; however, the reference gain of
Artificial targeted Forest during the validation interval. The simulation
did not match the reference pattern during the validation interval be-
cause the reference pattern was not stationary concerning transitions to
Artificial. Intensity Analysis’ transition level showed that the simulated
gain of Forest targeted Agriculture and Wetland, which is a pattern that
was stationary through time according to the reference data.

Additional analysis showed that Idrisi Selva’s CA-Markov model
simulated fewer and smaller transitions than an extrapolation of a
Markov chain would dictate. Table 3 shows that Artificial experienced
loss and Wetland experienced gain during the calibration interval, but
the CA-Markov model simulated zero loss of Artificial and zero gain of
Wetland. This illustrates how the CA-Markov did not follow the quan-
tities that a pure Markov extrapolation would have dictated.

4.2. Allocation disagreement and Figure of Merit’s components

The CA-Markov model uses the Cellular Automata algorithm pri-
marily to guide the change’s allocation. FOM’s components showed
how the simulation had substantial differences related to the
2006–2012 reference concerning allocation.

Hits and Wrong Hits were near zero, which indicates that the si-
mulation change did not correspond to the reference change. If Misses
or False Alarms equal zero, then allocation difference is zero. If Misses
equal False Alarms, then quantity difference is zero. If Misses are
greater than False Alarms, then reference change is greater than si-
mulated change. If Misses are less than False Alarms, then reference
change is less than simulated change, which our case study illustrates.
In our application, the sizes of Misses and False Alarms imply that al-
location difference was greater than quantity difference. This implies
that disagreement during the validation interval derived more from the
model’s Cellular Automata algorithm than from its Markov algorithm.

If we had examined only the single FOM metric, then we would not
be able to have the insights that we had from interpretation of Misses,
Hits, Wrong Hits and False Alarms. FOM’s single number combines
quantity disagreement and allocation disagreement into one measure-
ment, which fails to reveal whether disagreement derives from quantity
or allocation. If the quantity of simulation change differs substantially
from the quantity of reference change during the validation interval,
then it is possible for FOM to be small, even when the simulation al-
locates change as accurately as possible. For example, if the simulation
change is a small subset of the reference change, then then FOM will be
small, even when False Alarms are zero. If the reference change is a
small subset of the simulation change, then the FOM will be small, even
when Misses are zero. FOM’s components reveal the reasons for the size
of the FOM.
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In our application, the Cellular Automata algorithm did not use the
2000–2006 reference change to calibrate the allocation of simulated
change. The algorithm’s spatial filter causes a category to gain around
the edges of the category’s patches. However, Fig. 1 shows that re-
ference change in our study area is rarely allocated around the edges of
patches. Our use of the spatial filter may be one reason for the large
allocation disagreement.

We performed sensitivity analysis to see how the size of the spatial
filter influences the results. We ran the model with spatial filters of 3-
by-3, 5-by-5 and 7-by-7. Output showed trivial variation in the simu-
lation. The variation of the spatial filter caused variation in the quantity
of change for at most 36 cells of simulation loss of Wetland. Figure of
Merit was 1.6% for 3-by-3, 0.7% for 5-by-5 and 0.6% for 7-by-7. All
three sizes of the spatial filter cause simulated change to occur near

patch edges, whereas a larger spatial filter allows change to occur
slightly farther from patch edges. The sensitivity results suggest that
reference change is slightly more concentrated directly adjacent to
patch edges in the rare cases where reference change exists near patch
edges. Increase of the iteration parameter from six to twelve caused
FOM values to shrink. More sophisticated sensitivity analysis for model
parameters is a topic for future research (Saltelli et al., 2008).

Some investigators have compared CA-Markov model runs that used
a spatial filter to runs that did not use a spatial filter (Camacho Olmedo
et al., 2015; Pontius and Malanson, 2005). They found that the spatial
filter influenced the simulation’s allocation, but did not influence Hits
substantially.

Another possible reason for the large allocation disagreement might
be that we did not use suitability maps to guide the spatial allocation.

Fig. 3. Transition intensities for the gains of Artificial and Forest during three time intervals: (a-b) 2000–2006 reference, (c-d) 2006–2012 simulation, and (e-f)
2006–2012 reference.
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Idrisi’s CA-Markov allows inclusion of suitability maps that use in-
dependent variables for calibration. We did not use such suitability
maps because our purpose was to show methods for model assessment.
Other authors used suitability maps in their applications, while they
saw results similar to ours concerning allocation disagreement
(Memarian et al., 2012; Pontius et al., 2008; Pontius et al., 2011). Even
if we were to have used suitability maps, the CA’s spatial filter would
have still caused a category to gain around the category’s existing
patches. If the reference maps do not show spatial dependency and the
goal is predictive power, then the modeler should not use a spatial
filter.

Some modellers are tempted to modify the simulation model in an
effort to increase accuracy. A modeller should first have a specific goal
for a particular validation metric before modifying the model. The goal
will help the modeler to decide where to focus attention. Deep thought
is necessary to select a relevant validation metric and a goal for the
metric. The modeller must consider the particular applied research
question to select the metric and its goal. In our application to Hungary,
the size of simulation change was 1.53% of the spatial extent and the
reference change was 1.12%. If the main goal is to simulate the quantity
of change, then perhaps the simulation of somewhat more than the
reference change is tolerable, while allocation difference is less im-
portant. For example, if the goal is to simulate disturbance of carbon in
a region where carbon density is spatially uniform, then quantity dif-
ference determines error of carbon disturbance, while allocation dif-
ference is irrelevant (Pontius, 2018). However, if carbon density is not
spatially uniform, then allocation difference can be important for si-
mulation of carbon disturbance. Modellers must consider the goal of the

simulation before jumping to an endless chase to increase accuracy.
This article gives metrics to help modelers align the goal of the simu-
lation with various aspects of the model. For this article’s Hungarian
example, validation results showed allocation disagreement is much
larger than quantity disagreement. So if the goal is to decrease total
disagreement, then the modeler should focus on the allocation of
change. The first step would be to simplify the CA-Markov model by
eliminating the spatial filter, because the reference change is not con-
centrated near patch edges. The second step would be to use suitability
maps to guide the allocation of simulated change. Idrisi’s CA-Markov
model has the ability to include such suitability maps.

4.3. Limitations and pitfalls of popular metrics

Some scientists aim to use a single metric to evaluate modelling
applications. However, any single metric cannot offer insights con-
cerning various aspects of modelling applications. For example, a
popular and misleading metric is the percent correct between the si-
mulation map and the reference map at the end time point of the va-
lidation interval (Kityuttachai et al., 2013). Our application was 97%
correct according to a two-map comparison between the simulation and
the reference maps at 2012. Persistence simulated correctly is the
reason for the large percent correct. Percent correct at the validation
interval’s end time point fails to distinguish between correctly simu-
lated persistence versus correctly simulated change. Clear interpreta-
tion is limited or impossible for some other popular metrics, such as
FOM and the kappa index of agreement (Yang et al., 2014; Subedi et al.,
2013; Parsa et al., 2016; Chakraborti et al., 2018). Scientists claim

Fig. 4. Three-map comparison to examine simulation versus reference change during 2006–2012. The numbered boxes show three regions that contain Hits.

Fig. 5. Figure of Merit’s components as percentages of the spatial extent.
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kappa is an index that accounts for random agreement. But kappa ac-
counts for randomness in a confusing, misleading and irrelevant
manner (Pontius and Millones, 2011). Furthermore, kappa is not ap-
propriate for validation of temporal change because kappa compares
two maps at a single time point, thus cannot give insight concerning
temporal change. The FOM examines temporal change during the va-
lidation interval, but the FOM offers limited interpretation because the
FOM combines quantity disagreement and allocation disagreement into
a single metric. A metric that combines various concepts can be difficult
to interpret (Bradley et al., 2016). It is more helpful to use a collection
of metrics, where each metric reveals a distinct and clear aspect of the
modelling application. Furthermore, we recommend authors show
maps that reveal reference change during the calibration interval, si-
mulation change during the validation interval, and reference change
during the validation interval. An overlay of the latter two maps show
Misses, Hits, Wrong Hits, False Alarms and Correct Rejections, which
communicates clearly the quantity and allocation of changes during the
validation interval (Shafizadeh-Moghadam et al., 2017).

5. Conclusions

We have presented novel methods to interpret applications of land
change models. Our collection of metrics reveals various aspects that
are helpful to understand simulations of temporal change. For our CA-
Markov modelling application for a Hungarian case study, Intensity
Analysis’ interval level shows the model simulated more change than
the reference change during the validation interval, because the re-
ference change decelerated from the calibration interval to the valida-
tion interval. Intensity Analysis’ category level shows the CA-Markov
model did not follow exactly the loss intensities that a pure Markov
chain would imply. Intensity Analysis’ transition level shows the model
simulated correctly that the gain of Forest targeted Agriculture and
Wetland. Hits were almost zero, which indicates almost no intersection
between simulated and reference change during the validation interval.
Misses and False Alarms showed that allocation difference was larger
than quantity difference, which reflects how the Cellular Automata
algorithm caused more error than the Markov algorithm.

We conclude with recommendations that apply generally. Scientists
must compare visually and quantitatively the changes during three
intervals: (i) reference change during the calibration interval, (ii) si-
mulation change during the validation interval, and (iii) reference
change during the validation interval. Comparison between (i) and (ii)
relates the calibration patterns to the subsequent simulation.
Comparison between (ii) and (iii) distinguishes between simulation and
reference changes during the validation interval. Comparison between
(i) and (iii) shows the degree to which the reference patterns are sta-
tionary through time. For each comparison, Intensity Analysis reveals
various levels of information concerning quantity disagreement. The
FOM’s components distinguish quantity disagreement from allocation
disagreement during the validation interval. Our recommended col-
lection of metrics generate insights that are deeper than any single
metric can communicate.
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